167 research outputs found

    Impaired aortic distensibility measured by computed tomography is associated with the severity of coronary artery disease.

    Get PDF
    Impaired aortic distensibility index (ADI) is associated with cardiovascular risk factors. This study evaluates the relation of ADI measured by computed tomographic angiography (CTA) with the severity of coronary atherosclerosis in subjects with suspected coronary artery disease (CAD). Two hundred and twenty-nine subjects,age 63 ± 9 years, 42% female, underwent coronary artery calcium (CAC) scanning and CTA, and their ADI and Framingham risk score (FRS) were measured. End-systolic and end-diastolic (ED) cross-sectional-area(CSA) of ascending-aorta (AAo) was measured 15-mm above the left-main coronary ostium. ADI was defined as: [(Δlumen-CSA)/(lumen-CSA in ED × systemic-pulse-pressure) × 10(3)]. ADI measured by 2D-trans-thoracic echocardiography (TTE) was compared with CTA-measured ADI in 26 subjects without CAC. CAC was defined as 0, 1-100, 101-400 and 400+. CAD was defined as luminal stenosis 0, 1-49% and 50%+. There was an excellent correlation between CTA- and TTE-measured ADI (r(2)=0.94, P=0.0001). ADI decreased from CAC 0 to CAC 400+; similarly from FRS 1-9% to FRS 20% + (P<0.05). After adjustment for risk factors, the relative risk for each standard deviation decrease in ADI was 1.66 for CAC 1-100, 2.26 for CAC 101-400 and 2.32 for CAC 400+ as compared to CAC 0; similarly, 2.36 for non-obstructive CAD and 2.67 for obstructive CAD as compared to normal coronaries. The area under the ROC-curve to predict significant CAD was 0.68 for FRS, 0.75 for ADI, 0.81 for CAC and 0.86 for the combination (P<0.05). Impaired aortic distensibility strongly correlates with the severity of coronary atherosclerosis. Addition of ADI to CAC and traditional risk factors provides incremental value to predict at-risk individuals

    Prognostic Value of Number and Site of Calcified Coronary Lesions Compared With the Total Score

    Get PDF
    ObjectivesThis study sought to evaluate the long-term prognostic value of the number and sites of calcified coronary lesions and to compare the accuracy of number of calcified lesions with the extent of total calcium score.BackgroundThere is a strong relationship between mortality and total coronary artery calcium (CAC) score. It is not known whether the number of calcified lesions or their location influences outcome.MethodsA total of 14,759 asymptomatic patients were referred for evaluation of CAC scanning using electron beam tomography. Univariable and multivariable Cox proportional hazards models were developed to estimate time to all-cause mortality at, on average, 6.8 years (n = 281).ResultsRisk-adjusted annual mortality was 0.19% (95% confidence interval 0.18% to 0.21%) for patients without any calcified lesions. For patients with >20 lesions, annual risk-adjusted mortality exceeded 2% per year. Mortality rates were significantly higher for left main lesions as compared to other coronary arteries with annual mortality rates of 1.3%, 2.1%, 9.2%, and 13.6% for 1 to 2, 3 to 5, and ≥6 lesions, respectively (p < 0.0001). For left main CAC scores of 0 to 10, 11 to 100, 101 to 399, and 400 to 999, annual risk-adjusted mortality was 0.33%, 0.81%, 1.73%, and 7.71%, respectively (p < 0.0001). All 4 patients with a CAC score of ≥1,000 in the left main died during follow-up. However, patients with more frequent calcified lesions also had higher CAC scores. Specifically, ≥81% of patients with >10 calcified lesions also had a CAC score ≥100. With exception, for patients with CAC scores ≥1,000, annual mortality was dramatically higher at 3.0% to 4.5% for those with 1 to 5 calcified lesions as compared with 1.1% to 2.0% for those with 6 or more lesions (p < 0.0001).ConclusionsWe report that mortality rates increased proportionally with the number of calcified lesions. Although predictive information is contained in the number of calcified lesions, its added statistical value is minimal. With exception, patients with frequent lesions in the left main or those with a few large calcified lesions have a particularly high mortality risk

    Mapping of Mycobacterium tuberculosis Complex Genetic Diversity Profiles in Tanzania and Other African Countries

    Get PDF
    The aim of this study was to assess and characterize Mycobacterium tuberculosis complex (MTBC) genotypic diversity in Tanzania, as well as in neighbouring East and other several African countries. We used spoligotyping to identify a total of 293 M. tuberculosis clinical isolates (one isolate per patient) collected in the Bunda, Dar es Salaam, Ngorongoro and Serengeti areas in Tanzania. The results were compared with results in the SITVIT2 international database of the Pasteur Institute of Guadeloupe. Genotyping and phylogeographical analyses highlighted the predominance of the CAS, T, EAI, and LAM MTBC lineages in Tanzania. The three most frequent Spoligotype International Types (SITs) were: SIT21/CAS1-Kili (n = 76; 25.94%), SIT59/LAM11-ZWE (n = 22; 7.51%), and SIT126/EAI5 tentatively reclassified as EAI3-TZA (n = 18; 6.14%). Furthermore, three SITs were newly created in this study (SIT4056/EAI5 n = 2, SIT4057/T1 n = 1, and SIT4058/EAI5 n = 1). We noted that the East-African-Indian (EAI) lineage was more predominant in Bunda, the Manu lineage was more common among strains isolated in Ngorongoro, and the Central-Asian (CAS) lineage was more predominant in Dar es Salaam (p-value<0.0001). No statistically significant differences were noted when comparing HIV status of patients vs. major lineages (p-value = 0.103). However, when grouping lineages as Principal Genetic Groups (PGG), we noticed that PGG2/3 group (Haarlem, LAM, S, T, and X) was more associated with HIV-positive patients as compared to PGG1 group (Beijing, CAS, EAI, and Manu) (p-value = 0.03). This study provided mapping of MTBC genetic diversity in Tanzania (containing information on isolates from different cities) and neighbouring East African and other several African countries highlighting differences as regards to MTBC genotypic distribution between Tanzania and other African countries. This work also allowed underlining of spoligotyping patterns tentatively grouped within the newly designated EAI3-TZA lineage (remarkable by absence of spacers 2 and 3, and represented by SIT126) which seems to be specific to Tanzania. However, further genotyping information would be needed to confirm this specificity

    Low fingertip temperature rebound measured by digital thermal monitoring strongly correlates with the presence and extent of coronary artery disease diagnosed by 64-slice multi-detector computed tomography

    Get PDF
    Previous studies showed strong correlations between low fingertip temperature rebound measured by digital thermal monitoring (DTM) during a 5 min arm-cuff induced reactive hyperemia and both the Framingham Risk Score (FRS), and coronary artery calcification (CAC) in asymptomatic populations. This study evaluates the correlation between DTM and coronary artery disease (CAD) measured by CT angiography (CTA) in symptomatic patients. It also investigates the correlation between CTA and a new index of neurovascular reactivity measured by DTM. 129 patients, age 63 ± 9 years, 68% male, underwent DTM, CAC and CTA. Adjusted DTM indices in the occluded arm were calculated: temperature rebound: aTR and area under the temperature curve aTMP-AUC. DTM neurovascular reactivity (NVR) index was measured based on increased fingertip temperature in the non-occluded arm. Obstructive CAD was defined as ≥50% luminal stenosis, and normal as no stenosis and CAC = 0. Baseline fingertip temperature was not different across the groups. However, all DTM indices of vascular and neurovascular reactivity significantly decreased from normal to non-obstructive to obstructive CAD [(aTR 1.77 ± 1.18 to 1.24 ± 1.14 to 0.94 ± 0.92) (P = 0.009), (aTMP-AUC: 355.6 ± 242.4 to 277.4 ± 182.4 to 184.4 ± 171.2) (P = 0.001), (NVR: 161.5 ± 147.4 to 77.6 ± 88.2 to 48.8 ± 63.8) (P = 0.015)]. After adjusting for risk factors, the odds ratio for obstructive CAD compared to normal in the lowest versus two upper tertiles of FRS, aTR, aTMP-AUC, and NVR were 2.41 (1.02–5.93), P = 0.05, 8.67 (2.6–9.4), P = 0.001, 11.62 (5.1–28.7), P = 0.001, and 3.58 (1.09–11.69), P = 0.01, respectively. DTM indices and FRS combined resulted in a ROC curve area of 0.88 for the prediction of obstructive CAD. In patients suspected of CAD, low fingertip temperature rebound measured by DTM significantly predicted CTA-diagnosed obstructive disease

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
    corecore